Multivariate Time Series:

Challenges, missing data, and forecasting

Ana Filipa Almeida <u>anaa@ua.pt</u>

Introduction

deti universidade de aveiro departamento de eletrónica, telecomunicações e informátic

Brief overview of time series data

Time series data:

- describes how something changes over time,
- is a sequential set of data points,
- □ can present temporal patterns.
- Understanding time series data enables us to make predictions, identify patterns, and make informed decisions.

ECONO	nics					Calendar	News	Markets
rent crude oi	I							
Summary Fore	cast Stats	Alerts .↓ I	Export ▼					
کر Search		1M 📈	Ħ	88			к л К Л	œ :
Brent Crude Oil (JSD/Bbl) 91.0	99 -1.101 (-1	1.19%)					150
						-		125
						MMM	0	100
								91.09
					M	h	JM/	F0
r	mm	X		Mr. M	1	V		- 50
J	V	mulh	mm	- Andres				25
198	0	1990		2000	201	0	2020	100

universidade de aveiro theoria poiesis praxis

deti universidade de aveiro departamento de eletrónica, telecomunicações e informática

What is a multivariate time series?

Multivariate time series data:

- Evolution of several variables over time
- Different variables might influence each other
- U We might find more complex patterns, such as spatio-temporal patterns

universidade de aveiro theoria poiesis praxis

departamento de eletrónica, telecomunicações e informática

Challenges in analyzing time series data (1)

Complexity

- Complex systems
- Complex relationships between features
- Data quality
 - Missing data
 - Outliers
 - Noise
 - **.**...
- Non-stationary time series

High-Dimensionality

Challenges: Complexity

	DING NOMICS				Ca	alendar	News	Markets
rent cru	de oil							
Summary	Forecast Stat	s Alerts ⊥	Export -					
λ Search.	••••	1M ~	/ 🖻	88			K 3 K 3	•
rent Crud	e Oil (USD/Bbl) 9	1.099 -1.101 (-1.19%)					
					i i			150
						٨		125
						MM		100
					1 M		M. A	75
					NV V	h,	/M/	
	M	1		1	r v	V	Y W	50
	1.mm	In who	mant	manne				25
	~	γ ~··	V	~~				
	1980	1990		2000	2010		2020	1

- **G** Supply and demand
- Geopolitical events
- **G** Financial crises
- Pandemic
- Weather conditions
- Seasonal patterns
- **Cyclic patterns**
- **Currency** fluctuations

deti universidade de aveiro departamento de eletrónica, telecomunicações e informática

Challenges: Data Quality

- The quality of data significantly impacts the reliability of data analysis, modeling, and decision-making
- Problems commonly found:
 - Missing data
 - Anomalies
 - Inconsistent sampling rates
 - Duplicate data
 - Lack of consistency in units
 - Data drift
 - Noise
 - Data quality degradation over time

Use cases

Finances

- Stock Market Analysis
- **G** Forecasting stock prices

Healthcare

- Patient monitoring
- Detecting diseases
- Urban mobility
 - □ Traffic Management
 - □ Real-time traffic forecasting
 - Optimize traffic signal timing

My research aims to **forecast traffic metrics** even in the presence of **high ratios of missing data**.

universidade de aveiro theoria poiesis praxis

departamento de eletrónica, telecomunicações e informática

Dealing with Missing Data

departamento de eletrónica, telecomunicações e informátic

Time series missing data

- Missing data in time series can hide existing patterns and trends
- Simple imputation methods can fail in the presence of long intervals of missing data
- Data analysis and algorithms can be affected by the existence of missing data

universidade de aveiro theoria poiesis praxis

universidade de aveiro departamento de eletrónica, telecomunicações e informática

How can we notice missing data?

- 'Nan' values
- Masked missing data
 - Default values out of range/ that are not possible

The number of people in Hamburg yesterday was -1

- Default values inside the range/ are possible
 - This can be dangerous depending on the context
 - This can make it difficult for us to identify missing data

The number of people in Hamburg yesterday was 0

The speed of cars between 9 a.m. and 10 a.m. yesterday was 0 km/h

What is the impact of missing data?

- We can have different percentages of missing data
- Missing data can affect one or more features
- We can have problems that are more tolerant to missing data than others
- We can have models that deal better with lower rates of missing data, while other may deal better with higher rates of missing data
- U We can have different scenarios of missing data

Missing data can affect data analysis, models, and algorithms. Having a negative impact on its applications in business and research.

universidade de aveiro
departamento de eletrónica,
telecomunicacões e informática

How can we handle missing data?

Before it happen

- We can prevent it from happen by monitoring our system and preventing conditions that lead to missing data
- □ However, this is not always possible!!!!

□ After it happen

- □ Ignore missing data (not a very good solution)
- Delete observations with missing data (not adequate for time series, even if we have few observations with missing data)
- Replace missing data for a value
 - O or values out of range (however, this can bring additional problems)
 - □ Mean, median, mode…
 - Simple univariate imputation techniques
 - e.g., Moving Average
 - Multivariate imputation techniques

Case study: OpenWeather dataset

- Dataset provided by OpenWeather
- Data from sensors such as temperature, pressure, humidity, wind speed, wind direction, wind gust, and cloudiness
- Data from 20 cities
- □ Hourly data from 2022

Workflow

universidade de aveiro theoria poiesis praxis

departamento de eletrónica, telecomunicações e informátic

Generation of synthetic missing data

Overlap

t₀

p consecutive rows missing per column

p consecutive rows missing per column

Disjoint

universidade de aveiro theoria poiesis praxis

deti universidade de aveiro departamento de eletrónica, telecomunicações e informática

Generation of synthetic missing data

universidade de aveiro theoria poiesis praxis

departamento de eletrónica, telecomunicações e informátic

Algorithms

- □ We selected the top 3 from 20 statistical methods as baseline to evaluate our algorithm:
 - **Replaced missing data using a specific value:**
 - Mean, median, last value, previous value, the nearest value, zero
 - □ Interpolation techniques:
 - Barycentric, pchip, splines, polynomial functions, piecewise polynomial, akima
- **Experimented with the KNN imputer**
- □ Propose the Focalized KNN algorithm:
 - Based on KNN imputer

departamento de eletrónica,

k-NN imputer

- Based on k-NN
- □ It can be used for imputation by using similar points to guess the missing data
- □ However, k-NN has some problems...
 - □ Suffers from the curse of high dimensionality
 - □ Stores the complete dataset in memory
- □ KNN imputer can be used for time series datasets; however, it does not take advantage of time series properties!!!

Spatio-temporal patterns!

universidade de aveiro theoria poiesis praxis

departamento de eletrónica, telecomunicações e informática

Correlation between temporal lags

		(c	56 - C	-				20 76			S				
lag_0 -	1	0.87	0.63	-0.0077	-0.66	-0.041	0.84	0.97	0.85	0.98	0.85	0.97	0.84		- 0.8
lag_12 -	0.87	1	0.87	0.18	-0.61	-0.22	0.74	0.84	0.97	0.85	0.98	0.82	0.97		
lag_24 =	0.63	0.87	1	0.32	-0.49	-0.33	0.55	0.61	0.84	0.61	0.85	0.57	0.82		
lag_72 =	-0.0077	0.18	0.32	1	-0.0093	-0.66	-0.039	-0.028	0.15	-0.023	0.15	-0.044	0.13		- 0.4
lag_144 =	-0.66	-0.61	-0.49	-0.0093	1	-0.0066	-0.66	-0.63	-0.61	-0.63	-0.59	-0.63	-0.61		
lag_216 -	-0.041	-0.22	-0.33	-0.66	-0.0066	1	-0.0095	-0.028	-0.19	-0.048	-0.2	-0.029	-0.19		
iag_288 -	0.84	0.74	0.55	-0.039	-0.66	-0.0095	1	0.85	0.74	0.83	0.73	0.85	0.74		- 0.0
lag_2016 -	0.97	0.84	0.61	-0.028	-0.63	-0.028	0.85	1	0.86	0.98	0.85	0.98	0.84		
lag_2028 -	0.85	0.97	0.84	0.15	-0.61	-0.19	0.74	0.86	1	0.85	0.98	0.83	0.98		
lag_4032 =	0.98	0.85	0.61	-0.023	-0.63	-0.048	0.83	0.98	0.85	1	0.86	0.98	0.84		0.4
lag_4044 -	0.85	0.98	0.85	0.15	-0.59	-0.2	0.73	0.85	0.98	0.86	1	0.83	0.98		
lag_6048 -	0.97	0.82	0.57	-0.044	-0.63	-0.029	0.85	0.98	0.83	0.98	0.83	1	0.84		
lag_6060 -	0.84	0.97	0.82	0.13	-0.61	-0.19	0.74	0.84	0.98	0.84	0.98	0.84	1		0.8
				· · · · · · · · · · · · · · · · · · ·											

universidade de aveiro theoria poiesis praxis

departamento de eletrónica, telecomunicações e informática

Focalized KNN

- Select the most correlated features
- □ Select the most relevant temporal lags
- Select the column with less missing data
 - Apply the KNN imputer for the matrix composed with:
 - the column c with missing data + correlated features + relevant temporal lags
 - □ Replace column c with the column with the imputed data
 - **Repeat until there is no more missing data**

Evaluation metrics

Mean Squared Error (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

R²-Score

$$R^2 - Score = 1 - \frac{MSE}{MSE_{baseline}}$$

universidade de aveiro theoria poiesis praxis

deti universidade de aveiro departamento de eletrónica, telecomunicações e informática

Overlap versus Disjoint missing pattern

Discussion

Pros

- We do not need to train our algorithm
- Good with disjoint patterns
- Our solution helps with the curse of high dimensionality
- And Cons
 - Usually, it takes more time than regular KNN, especially if we have missing data affecting several columns
 - □ Not very good with overlap patterns

In the future, we would like to:

- Develop other methods to perform imputation in time series, such as methods based on Autoencoders
- Create more patterns of missing data to evaluate our models

Forecasting

deti universidade de aveiro departamento de eletrónica, telecomunicações e informátic

Brief overview of forecasting

- □ Forecasting is the process of making predictions about future events.
- Forecasting can be very beneficial in decision-making, planning, and risk management.
- There are different time horizons for forecasting, such as short, medium, and long-term.
- Before applying forecasting techniques, we should analyze the time series.

Forecasting methods

- Naïve methods
 - Use the last value to forecast the next one
- Statistical methods
 - AutoRegressive (AR)
 - Moving Average (MA)
 - Autoregressive Integrated Moving Average (ARIMA)
 - Seasonal ARIMA (SARIMA)
- Machine Learning methods
 - SVM
 - knn
 - LightGBM
- Deep Learning methods
 - FNN
 - GRU
 - LSTM
 - CNN

What type of learning problem is forecasting?

universidade de aveiro theoria poiesis praxis

departamento de eletrónica, telecomunicações e informática

Choosing the best model for forecasting methods

Most used evaluation metrics in the literature:

- Mean Absolute Error (MAE)
- Mean Absolute Percentage Error (MAPE)
- □ Root Mean Squared Error (RMSE)
- R²-Score

Cross-Validation for Time-series

Metrics based on comparing the **observed value** with the **predicted value**

Case study: Forecasting traffic flow

Dataset:

- Traffic counters deployed in Oporto, Portugal
- Data from September 30 to November 3 of 2019
- 5 minutes interval
- More than 100 sensors

Approach and Methods

- □ SARIMA
- □ FNN models
- LSTM-based models
- CNN-based models
- Hybrid LSTM-CNN models

Forecasting Pipeline

universidade de aveiro theoria poiesis praxis

deti universidade de aveiro departamento de eletrónica, telecomunicações e informática

Results and Discussion

Short-term forecasting

- SARIMA achieves a good performance
- Computationally light
- (We can also use deep learning strategies)

Long-term forecasting

- SARIMA is not suitable for long-term forecasting
- Deep learning strategies achieve good performance
- The best model was based on CNNs

universidade de aveiro

neoria poiesis praxis

LSTMs take more time to train than CNNs or FNNs

Vehicul	ar traffic flow pred	iction using
deploye	d traffic counters i	n a city 🖈
<u>Ana Almeida</u> ^{a b}	🝳 🖾 , <u>Susana Brás ^{a b} ⊠ , Ilídio Oliveira</u>	^{a b} ⊠, <u>Susana Sargento</u> ^{a c} ⊠
Show more 🗸		
+ Add to Mende	eley 😪 Share 🍠 Cite	
https://doi.org/10.1/	016/i future 2021 10 022 7	Cot rights and contain
https://doi.org/10.10		Get rights and conten
https://doi.org/10.10		Get rights und conter
Highlight	ts	Get rights and conten
Highligh • Develop statistic	ts ment of a pipeline to forecast the traf al and deep learning methods.	fic flow observed through both
Highligh • Develop statistic • Researc anomali	ts oment of a pipeline to forecast the traf al and deep learning methods. h approaches for anomaly detection a ies, through the counting traffic data.	fic flow observed through both nd traffic prediction upon
Highligh • Develop statistic • Researc anomal • Platform	ts oment of a pipeline to forecast the traf al and deep learning methods. h approaches for anomaly detection a ies, through the counting traffic data. n for dynamic and stream-based traffi	fic flow observed through both nd traffic prediction upon c flow forecasting.
Highligh • Develop statistic • Researc anomal • Platforn	ts pment of a pipeline to forecast the traf al and deep learning methods. h approaches for anomaly detection a ies, through the counting traffic data. n for dynamic and stream-based traffi	fic flow observed through both nd traffic prediction upon c flow forecasting.

telecomunicacões e informática

Future Work

deti universidade de aveiro departamento de eletrónica, telecomunicações e informátic

Future Work

- Develop a model able predict future values even in the presence of missing data
 - □ Imputation + Forecasting

deti universidade de aveiro departamento de eletrónica, telecomunicações e informática

Thank you!

anaa@ua.pt

ງັງງ

ונו

נננ

NAP

₿ı₿

deti universidade de aveiro departamento de eletrónica, telecomunicações e informática