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Brief overview of time series data
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What is a multivariate time series?

(1 Multivariate time series data:
(1 Evolution of several variables over time
(1 Different variables might influence each other
1 We might find more complex patterns, such as spatio-temporal patterns
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Challenges in analyzing time series data (1)

d  Complexity
(1 Complex systems
(1 Complex relationships between features

(A Data quality
(A Missing data
(A Outliers
(1 Noise
EI

d  Non-stationary time series

(1 High-Dimensionality
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Challenges: Complexity

— TRADING Calendar News  Markets

Brent crude oil
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Supply and demand
Geopolitical events
Financial crises
Pandemic

Weather conditions
Seasonal patterns
Cyclic patterns
Currency fluctuations




Challenges: Data Quality

(1 The quality of data significantly impacts the reliability of data analysis, modeling, and
decision-making

L
B,

roblems commonly found:

Missing data

Anomalies

Inconsistent sampling rates
Duplicate data

Lack of consistency in units

Data drift

Noise

Data quality degradation over time

oo doodd
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Use cases

[ Finances
(1 Stock Market Analysis
(1 Forecasting stock prices

(A Healthcare
(A Patient monitoring
(A Detecting diseases

d  Urban mobility
d  Traffic Management
[d Real-time traffic forecasting
[d  Optimize traffic signal timing
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My research aims to forecast traffic
metrics even in the presence of
high ratios of missing data.
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Dealing with Missing Data
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Time series missing data

a Missing data in time series can hide

existing patterns and trends

a Simple imputation methods can fail in

the presence of long intervals of
missing data

a Data analysis and algorithms can be
affected by the existence of missing

data
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How can we notice missing data?

d ‘Nan’ values
(1 Masked missing data
(1 Default values out of range/ that are not possible

The number of people in Hamburg yesterday was -1

(A Default values inside the range/ are possible
(A This can be dangerous depending on the context
(A This can make it difficult for us to identify missing data

The number of people in Hamburg yesterday was 0

The speed of cars between 9 a.m. and 10 a.m. yesterday was 0 km/h
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What is the impact of missing data?

Avg. speed of light vehicles on lane 1

(A We can have different percentages of missing y
data it
[d  Missing data can affect one or more features P aonerer 20007 20210801 2021:08-15 20210901 2021:09-15
1 We can have problems that are more tolerant =
to missing data than others - w
[d  We can have models that deal better with lower 0010701 20210735 20010801 20210815 20210901 2021095
rates of missing data, while other may deal i
better with higher rates of missing data 5,
[  We can have different scenarios of missing data e TR | e e e

L .
2021-07-01 2021-07-15 2021-08-01 2021-08-15 2021-09-01 2021-09-15

Missing data can affect data analysis, models,
and algorithms. Having a negative impact on
its applications in business and research.
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How can we handle missing data?

(1 Before it happen
(A We can prevent it from happen by monitoring our system and preventing conditions that
lead to missing data
(1 However, this is not always possible!!!!
(1 After it happen
(1 Ignore missing data (not a very good solution)
(1 Delete observations with missing data (not adequate for time series, even if we have few
observations with missing data)
(1 Replace missing data for a value
0 or values out of range (however, this can bring additional problems)
Mean, median, mode...
Simple univariate imputation techniques
d e.g., Moving Average
Multivariate imputation techniques

L OO0
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Case study: OpenWeather dataset

Dataset provided by OpenWeather

Data from sensors such as temperature, pressure, humidity, wind speed, wind direction, wind
gust, and cloudiness

Data from 20 cities

Hourly data from 2022

Ll OO0
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Workflow

Missing data Reconstructed time
imputation series :

Time series with
missing data

Generate synthetic
data

Evaluation and model
selection




Generation of synthetic missing data
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Generation of synthetic missing data
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Algorithms

(1 We selected the top 3 from 20 statistical methods as baseline to evaluate our algorithm:
(1 Replaced missing data using a specific value:
(1 Mean, median, last value, previous value, the nearest value, zero
(1 Interpolation techniques:
(1 Barycentric, pchip, splines, polynomial functions, piecewise polynomial, akima
(1 Experimented with the KNN imputer
(1 Propose the Focalized KNN algorithm:
(1 Based on KNN imputer
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k-NN Algorithm
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k-NN imputer

Based on k-NN
It can be used for imputation by using similar points to guess the missing data

However, k-NN has some problems...
(1 Suffers from the curse of high dimensionality
(1 Stores the complete dataset in memory

Lo

(d  KNN imputer can be used for time series datasets; however, it does not take advantage of time
series properties!!!
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Correlation between temporal lags
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Focalized KNN

Select the most correlated features
Select the most relevant temporal lags
Select the column with less missing data
1 Apply the KNN imputer for the matrix composed with:
(A the column c with missing data + correlated features + relevant temporal lags
(1 Replace column c with the column with the imputed data
(1 Repeat until there is no more missing data

OO0
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Evaluation metrics

A Mean Squared Error (MSE)

1 = .
MSE =~ (Y- Y)?
L
d  R2-Score
MSE
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R2-Score

Overlap versus Disjoint missing pattern
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Discussion

J

J

In the future, we would like to:

2
2

Pros

(1 We do not need to train our algorithm

(1 Good with disjoint patterns

(A Our solution helps with the curse of high
dimensionality

And Cons

(1 Usually, it takes more time than regular KNN,
especially if we have missing data affecting several
columns

(1 Not very good with overlap patterns

Develop other methods to perform imputation in time
series, such as methods based on Autoencoders

Create more patterns of missing data to evaluate our
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Brief overview of forecasting

L

Forecasting is the process of making predictions about future events.
Forecasting can be very beneficial in decision-making, planning, and

risk management.
a There are different time horizons for forecasting, such as short,

medium, and long-term.
o Before applying forecasting techniques, we should analyze the time

series.
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Forecasting methods

(d  Naive methods
[d  Use the last value to forecast the next one
[ Statistical methods
(1 AutoRegressive (AR)
(A Moving Average (MA)
(1 Autoregressive Integrated Moving Average (ARIMA)
(1 Seasonal ARIMA (SARIMA)
(A Machine Learning methods
d SVM
(d kNN
3 LightGBM
(1 Deep Learning methods
FNN
GRU
LSTM
CNN

N
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What type of learning problem is forecasting?

Machine Learning

T

Supervised Learning

Semi-Supervised Learning Unsupervised Learning

T

Reinforcement Learning

Self-Supervised Learning
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Choosing the best model for forecasting methods

A Most used evaluation metrics in the literature:

(A Mean Absolute Error (MAE)

[ Mean Absolute Percentage Error (MAPE) Metrics based on comparing
(1 Root Mean Squared Error (RMSE) the observed value with the
A R*Score predicted value

1 Cross-Validation for Time-series

Dataset
K-Fold Rolling Blocked Legend:
Iteration 1 Original data
Iteration 2 Train
lteration 3 Test
lteration 4 Not used
lteration 5
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Case study: Forecasting traffic flow

Dataset:

a2 Traffic counters deployed in Oporto, Portugal

2 Data from September 30 to November 3 of 2019
2 5 minutes interval

a More than 100 sensors
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Approach and Methods

SARIMA

FNN models

LSTM-based models
CNN-based models
Hybrid LSTM-CNN models

L OO d Q0
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Forecasting Pipeline

Preprocessing module

Original Data

Data reduction

Y

Select a traffic flow sensor

|

Select features

Y

Data Cleaning

‘ Replace missing data with zeros ‘

|

Smoothing data

Statistical

Data h
Transformation ‘ Normalization ‘
Y
Preprocessed Data
Deep Learning
forecasting module ‘
v

‘ forecasting module

Feature selection

v

l

Train the model ‘

Train the model

l

|

Test the model ‘

Test the model

!

l

Inverse normalization ‘

Inverse normalization

h 4

Forecasted values
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Forecasted values
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Results and Discussion

A Short-term forecasting

2
2
2

SARIMA achieves a good performance
Computationally light
(We can also use deep learning strategies)

d  Long-term forecasting

oo

SARIMA is not suitable for long-term forecasting
Deep learning strategies achieve good performance
The best model was based on CNNs

LSTMs take more time to train than CNNs or FNNs
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Highlights

« Development of a pipeline to forecast the traffic flow observed through both
statistical and deep learning methods.

» Research approaches for anomaly detection and traffic prediction upon
anomalies, through the counting traffic data.

+ Platform for dynamic and stream-based traffic flow forecasting.

Abstract

The sustainable growth of cities created the need for better informed decisions based on

information and communication technologies to sense the city and quantify its pulse. An

important part of this concept of “smart cities” is the characterization of vehicular traffic
flows and the prediction of urban mobility. Although there are several sensors that are
able to infer the traffic flows in the city, road-mounted traffic counters can measure the
number of vehicles in different parts of the roads. However, they are not usually used in
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Future Work

2 Develop a model able predict future values even in the presence of
missing data
2 Imputation + Forecasting
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